CyberHappenings logo

Track cybersecurity events as they unfold. Sourced timelines, daily updates. Fast, privacy‑respecting. No ads, no tracking.

Discovery of MalTerminal Malware Leveraging GPT-4 for Ransomware and Reverse Shell

First reported
Last updated
1 unique sources, 1 articles

Summary

Hide ▲

Researchers have identified MalTerminal, a malware that incorporates GPT-4 for generating ransomware code and reverse shells. This marks the earliest known instance of LLM-embedded malware. The malware was presented at the LABScon 2025 security conference. MalTerminal was likely a proof-of-concept or red team tool, never deployed in the wild. It includes Python scripts and a defensive tool called FalconShield. The use of LLMs in malware represents a new challenge for cybersecurity defenses. Additionally, threat actors are using LLMs to bypass email security layers by embedding hidden prompts in phishing emails. This technique deceives AI-powered security scanners, allowing malicious emails to reach users' inboxes. The emails exploit the Follina vulnerability (CVE-2022-30190) to deliver additional malware and disable Microsoft Defender Antivirus. AI-powered site builders are also being exploited to host fake CAPTCHA pages leading to phishing websites, stealing user credentials and sensitive information.

Timeline

  1. 20.09.2025 08:48 1 articles · 9d ago

    Discovery of MalTerminal Malware Using GPT-4 for Ransomware and Reverse Shell

    Researchers have identified MalTerminal, a malware that incorporates GPT-4 for generating ransomware code and reverse shells. This marks the earliest known instance of LLM-embedded malware. The malware was presented at the LABScon 2025 security conference. MalTerminal was likely a proof-of-concept or red team tool, never deployed in the wild. It includes Python scripts and a defensive tool called FalconShield. The use of LLMs in malware represents a new challenge for cybersecurity defenses. Additionally, threat actors are using LLMs to bypass email security layers by embedding hidden prompts in phishing emails. This technique deceives AI-powered security scanners, allowing malicious emails to reach users' inboxes. The emails exploit the Follina vulnerability (CVE-2022-30190) to deliver additional malware and disable Microsoft Defender Antivirus. AI-powered site builders are also being exploited to host fake CAPTCHA pages leading to phishing websites, stealing user credentials and sensitive information.

    Show sources

Information Snippets

Similar Happenings

XCSSET macOS Malware Targets Xcode Developers with Enhanced Features

A new variant of the XCSSET macOS malware has been detected, targeting Xcode developers with enhanced features. This variant includes improved browser targeting, clipboard hijacking, and persistence mechanisms. The malware spreads by infecting Xcode projects, stealing cryptocurrency, and browser data from infected devices. The malware uses run-only compiled AppleScripts for stealthy execution and employs sophisticated encryption and obfuscation techniques. It incorporates new modules for data exfiltration, persistence, and clipboard monitoring. The malware has been observed in limited attacks, with Microsoft sharing findings with Apple and GitHub to mitigate the threat. Developers are advised to keep macOS and apps up to date and inspect Xcode projects before building them.

Malicious 'postmark-mcp' npm package exfiltrated user emails

An unofficial npm package named 'postmark-mcp' silently stole users' emails after a malicious update. The package, which mimicked the official 'postmark-mcp' project, added a line of code in version 1.0.16 to exfiltrate email communications to an external address. The malicious version was available for a week and recorded around 1,643 downloads, potentially exposing sensitive information. The package was used to interface AI assistants with the Postmark email delivery platform, allowing them to send emails on behalf of users or apps. The malicious functionality could have exposed personal communications, password reset requests, two-factor authentication codes, financial information, and customer details. Users who downloaded the package are advised to remove it immediately, rotate potentially exposed credentials, and audit all MCP servers in use. The malicious package was deleted by the developer 'phanpak' after being contacted, who maintains 31 other packages on npm.

CISA Emergency Directive 25-03: Mitigation of Cisco ASA Zero-Day Vulnerabilities

The Cybersecurity and Infrastructure Security Agency (CISA) issued Emergency Directive 25-03, mandating federal agencies to identify and mitigate zero-day vulnerabilities in Cisco Adaptive Security Appliances (ASA) exploited by an advanced threat actor. The directive requires agencies to account for all affected devices, collect forensic data, and upgrade or disconnect end-of-support devices by September 26, 2025. The vulnerabilities allow threat actors to maintain persistence and gain network access. Cisco identified multiple zero-day vulnerabilities (CVE-2025-20333, CVE-2025-20362, CVE-2025-20363, and CVE-2025-20352) in Cisco ASA, Firewall Threat Defense (FTD) software, and Cisco IOS software. These vulnerabilities enable unauthenticated remote code execution, unauthorized access, and denial of service (DoS) attacks. GreyNoise detected large-scale campaigns targeting ASA login portals and Cisco IOS Telnet/SSH services, indicating potential exploitation of these vulnerabilities. The campaign is widespread and involves exploiting zero-day vulnerabilities to gain unauthenticated remote code execution on ASAs, as well as manipulating read-only memory (ROM) to persist through reboot and system upgrade. CISA and Cisco linked these ongoing attacks to the ArcaneDoor campaign, which exploited two other ASA and FTD zero-days (CVE-2024-20353 and CVE-2024-20359) to breach government networks worldwide since November 2023. CISA ordered agencies to identify all Cisco ASA and Firepower appliances on their networks, disconnect all compromised devices from the network, and patch those that show no signs of malicious activity by 12 PM EDT on September 26. CISA also ordered that agencies must permanently disconnect ASA devices that are reaching the end of support by September 30 from their networks. The U.K. National Cyber Security Centre (NCSC) confirmed that threat actors exploited the recently disclosed security flaws in Cisco firewalls to deliver previously undocumented malware families like RayInitiator and LINE VIPER. Cisco began investigating attacks on multiple government agencies in May 2025, linked to the state-sponsored ArcaneDoor campaign. The attacks targeted Cisco ASA 5500-X Series devices to implant malware, execute commands, and potentially exfiltrate data. The threat actor modified ROMMON to facilitate persistence across reboots and software upgrades. The compromised devices include ASA 5500-X Series models running specific software releases with VPN web services enabled. The Canadian Centre for Cyber Security urged organizations to update to a fixed version of Cisco ASA and FTD products to counter the threat.

Brickstorm Malware Used in Long-Term Espionage Against U.S. Organizations

The UNC5221 activity cluster, attributed to suspected Chinese hackers, has been using the BRICKSTORM malware in long-term espionage operations against U.S. organizations in the technology, legal, SaaS, and BPO sectors. The malware, a Go-based backdoor, has been active for over a year, with an average dwell time of 393 days. It has been used to steal data from various sectors, including SaaS providers and BPOs. The attackers exploit vulnerabilities in edge devices and use anti-forensics techniques to avoid detection. The malware serves multiple functions, including web server, file manipulation, dropper, SOCKS relay, and shell command execution. It targets appliances without EDR support, such as VMware vCenter/ESXi, and uses legitimate traffic to mask its C2 communications. The attackers aim to exfiltrate emails and maintain stealth through various tactics, including removing the malware post-operation to hinder forensic investigations. The attackers use a malicious Java Servlet Filter (BRICKSTEAL) on vCenter to capture credentials, and clone Windows Server VMs to extract secrets. The stolen credentials are used for lateral movement and persistence, including enabling SSH on ESXi and modifying startup scripts. The malware exfiltrates emails via Microsoft Entra ID Enterprise Apps, utilizing its SOCKS proxy to tunnel into internal systems and code repositories. UNC5221 focuses on developers, administrators, and individuals tied to China's economic and security interests. Mandiant has released a free scanner script to help defenders detect BRICKSTORM. The BRICKSTORM backdoor is under active development, with a variant featuring a delay timer for C2 communication. The attackers have exploited Ivanti Connect Secure zero-day vulnerabilities (CVE-2023-46805 and CVE-2024-21887) for initial access. The attackers have used a custom dropper to install a malicious Java Servlet filter (BRICKSTEAL) in memory, avoiding detection. The attackers have modified init.d, rc.local, or systemd files to ensure persistence on appliances. The attackers have targeted Windows environments in Europe since at least November 2022. The attackers have been linked to other related Chinese threat actors besides UNC5221. The campaign has been monitored by Mandiant since March 2025. The attackers have targeted downstream customers of compromised SaaS providers. The attackers are believed to be analyzing stolen source code to identify zero-day vulnerabilities in enterprise technologies. The attackers use a delay timer to lie dormant on infected systems until a hard-coded date. The malware employs Garble, an open-source tool, for code obfuscation to hide function names, structures, and logic. Brickstorm has been found on VMware vCenter and ESXi hosts, often deployed prior to pivoting to these systems. The attackers use legitimate cloud services like Cloudflare Workers or Heroku for C2 communications. The attackers use dynamic domains like sslip.io or nip.io that point directly to the C2 server’s IP. The attackers favor appliance and management-plane compromise, per-victim obfuscated Go binaries, delayed-start implants, and Web/DoH C2 to preserve stealth. The attackers harvest and use valid high-privilege credentials to appear as routine administrator tasks. The attackers deploy in-memory servlet filters, remove installer artifacts, and embed delayed-start logic to limit forensic traces. The attackers abuse virtualization management capabilities, such as cloning VMs to extract credential stores offline. The attackers deploy an in-memory Java Servlet filter on vCenter to intercept and decode web authentication to harvest high-privilege credentials. The attackers use a SOCKS proxy on compromised appliances to tunnel into internal networks for interactive access and file retrieval.

Command injection flaw in Libraesva ESG exploited by state actors

Libraesva has released an emergency update for its Email Security Gateway (ESG) solution to address a command injection vulnerability (CVE-2025-59689). This flaw, exploited by a state-sponsored actor, allows arbitrary shell command execution via a crafted email attachment. The vulnerability affects all versions from 4.5 onwards and has been patched in versions 5.0.31, 5.1.20, 5.2.31, 5.3.16, 5.4.8, and 5.5.7. The exploit was discovered and patched within 17 hours of detection. The vulnerability is triggered by improper sanitization of compressed archive formats, enabling non-privileged users to execute arbitrary commands. The patch includes a sanitization fix, automated scans for indicators of compromise, and a self-assessment module to verify the update's application. The vulnerability has a CVSS score of 6.1, indicating medium severity. Libraesva has identified one confirmed incident of abuse by a foreign hostile state entity. Customers using versions below 5.0 must upgrade manually to a supported release, as they have reached end-of-life and will not receive a patch for CVE-2025-59689.